

Evaluating the potential of chemical reanalysis products for air pollution exposure assessment

Kazuyuki Miyazaki, Kevin Bowman

Jet Propulsion Laboratory, California Institute of Technology

Long-term ozone exposure and mortality

Number of deaths attributable to air pollution (ambient PM2.5, household, and ozone) in 2017

- is the fifth highest mortality risk factor globally and associated with about 4.9 million deaths (2017)
- reduced about 20 months of our life in average, with significant regional differences
- **<u>Developing countries</u>**: Increased emissions & stronger OPE → increasing risks

The in-situ observing network is clearly insufficient for global health impact assessment (Fleming et al., 2017; Seltzer et al., 2018 for US, Europe, and China)

The regular surface ozone monitoring sites: Roughly only 17% of the global population!

Long-term ozone exposure and mortality

Chemical transport models

Population, Mortality rate, Concentration response

Chemical transport models provide global maps but suffer from systematic errors (Silva et al., 2016; Malley et al., 2017, Zhang et al., 2018). Chang et al. (2019) combined multiple models and TOAR observations, but it is still limited by the observing network

Long-term ozone exposure and mortality

Chemical transport models

Population, Mortality rate, Concentration response

Chemical transport models provide global maps but suffer from systematic errors (Silva et al., 2016; Malley et al., 2017, Zhang et al., 2018). Chang et al. (2019) combined multiple models and TOAR observations, but it is still limited by the observing network

New state-of-the-art chemical data assimilation systems can mitigate these limitations by integrating various observational information with a model

Observations

Concentrations

Health Impacts

Multi-constituent chemical data assimilation

EnKF data assimilation to integrate a suite of measurements from multiple satellite sensors

Multi-model data assimilation integration

Chemical reanalyses provide useful information on exposure estimates and its attributions. Nevertheless, systematic model errors must be quantified in order to assess their fidelity

Multi-mOdel Multi-cOnstituent CHEMical data assimilation (MOMO-Chem)

Multi-model data assimilation integration

Chemical reanalyses provide useful information on exposure estimates and its attributions. Nevertheless, systematic model errors must be quantified in order to assess their fidelity

Multi-mOdel Multi-cOnstituent CHEMical data assimilation (MOMO-Chem)

Global NOx emission trends (2005-2018)

2005-2010

2010-2015

2015-2018

strong impacts on air quality and human health in developing countries

Global NOx emission trends (2005-2018)

Global total emissions:

Almost constant during 2005-2018 (49.3±2.7TgN)

Miyazaki et al., to be submitted

Global surface ozone trends (Annual average daily maximum 8-h ozone: ADM8h)

Chemical reanalyses provide useful information on exposure estimates and its attributions (mostly due to NOx emissions changes over polluted areas)

Change in mortality due to long-term ozone exposure

$\Delta Mort = y_0(1 - \exp^{-\beta \Delta X}) Pop.$

$$HR = \exp^{\beta \Delta Y}$$

$$\Delta X = \{ \begin{array}{ll} 0, & \text{if O3_GC} \leq \text{LCC} \\ O3_GC - LCC, & \text{if O3_GC} > \text{LCC} \end{array} \}$$

- *y*_{0:} baseline mortality rate (800/100,000)
- Pop: exposed population (GWP v4)
- 6: effect estimate (from the hazard ratio: HR))
- HR: 1.12 (Turner et al., 2016)
- LCC: 33.3 ppb

ΔMort in 2016 [number of deaths per 1°x1° grid]

Difference between 2016 and 2005 [%] due to ΔX and Pop changes

 Harnessing the current observing system provides sufficient constraints to greatly reduce the influences of model errors and to provide the consistent ozone analysis

• Possible uncertainty ranges in the a posteriori emissions due to model errors: 13–31% for industrialized areas and 4–21% for BB areas.

Surface ozone response to NOx emissions

The analysis increments
were used to quantify model
sensitivities related to
chemistry and transport

- TR > NH: Latitudinal shifts in NOx emissions would increases global ozone.
- The sensitivity of surface ozone to NOx emissions varied by a factor of 2 among models, which would increase exposure estimate uncertainty.
- The observationally-constrained, multi-model integrated fields provide fundamentally different fast chemical processes than those in the individual models.

MDA8 ozone trend (2016 minus 2006): before assimilation

Unrealistic trends & large spreads among the models (2-10 ppb)

MDA8 ozone trend (2016 minus 2006): after assimilation

Multi-model spreads are reduced to 1-5 ppb

→ up to 30 % mortality uncertainty

Towards an Air Quality Constellation

Individual satellite measurements have provided an unparalleled source of global data but suffer from limited surface sensitivity for many key species

TES/OMI to infer global surface ozone A53T-2932 poster by Nadia Colombi (Friday afternoon)

TES/OMI 0-3 km Column Averaged Ozone

How does the constellation improve health impact assessment?

- GEO sounders will provide an unprecedented number of composition observations at high resolution.
- LEO sounders (IASI, CrIS, S5p) provide the global picture and thread the GEO observations together.
- Multispectral retrievals provide improved vertical sensitivity.

NASA

Conclusions

- While the most recent reanalysis products (e.g., TCR-2 & CAMS) agree well each other, the discrepancy increased towards the surface due to differing chemical model, assimilation approaches, and observing system.
- The sensitivity of surface ozone to NOx emissions varied by a factor of 2 among models, which would increase the inter-reanalysis discrepancy and exposure estimate uncertainty.
- The multi-constituent and multi-model data assimilation framework provides observationally-constrained estimates of global air quality exposure (1.00M for 2005 and 1.25M for 2016) and its uncertainty (up to 30 %) for the past decade.
- Assimilating datasets from a new constellation of LEO sounders, GEO satellites, and multispectral retrievals would further enhance the potential of chemical reanalysis for observationally constrained global health impact assessment